Historia de las Matemáticas por Anónimo - muestra HTML

TOME EN CUENTA: Esta es una vista previa en HTML y algunos elementos como enlaces o números de página pueden ser incorrectos.
Para la versión completa, descargue el libro en PDF, ePub, Kindle
HISTORIA DE LAS MATEMÁTICAS

Matemáticas, estudio de las relaciones entre cantidades, magnitudes y propiedades, y de las operaciones lógicas utilizadas para deducir cantidades, magnitudes y propiedades desconocidas.

En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización de ambos (como en el álgebra). Hacia mediados del siglo XIX las matemáticas se empezaron a considerar como la ciencia de las relaciones, o como la ciencia que produce condiciones necesarias. Esta última noción abarca la lógica matemática o simbólica —ciencia que consiste en utilizar símbolos para generar una teoría exacta de deducción e inferencia lógica basada en definiciones, axiomas, postulados y reglas que transforman elementos primitivos en relaciones y teoremas más complejos.

Trataremos la evolución de los conceptos e ideas matemáticas siguiendo su desarrollo histórico.

En realidad, las matemáticas son tan antiguas como la propia humanidad: en los diseños prehistóricos de cerámica, tejidos y en las pinturas rupestres se pueden encontrar evidencias del sentido geométrico y del interés en figuras geométricas. Los sistemas de cálculo primitivos estaban basados, seguramente, en el uso de los dedos de una o dos manos, lo que resulta evidente por la gran abundancia de sistemas numéricos en los que las bases son los números 5

y 10.

Las matemáticas en la antigüedad

Las primeras referencias a matemáticas avanzadas y organizadas datan del tercer milenio a.C., en Babilonia y Egipto. Estas matemáticas estaban dominadas por la aritmética, con cierto interés en medidas y cálculos geométricos y sin mención de conceptos matemáticos como los axiomas o las demostraciones.

Los primeros libros egipcios, escritos hacia el año 1800 a.C., muestran un sistema de numeración decimal con distintos símbolos para las sucesivas potencias de 10 (1, 10, 100…), similar al sistema utilizado por los romanos. Los números se representaban escribiendo el símbolo del 1 tantas veces como unidades tenía el número dado, el símbolo del 10 tantas veces como decenas había en el número, y así sucesivamente. Para sumar números, se sumaban por separado las unidades, las decenas, las centenas… de cada número. La multiplicación estaba basada en duplicaciones sucesivas y la división era el proceso inverso.

Los egipcios utilizaban sumas de fracciones unidad (:), junto con la fracción , para expresar todas las fracciones. Por ejemplo, era la suma de las fracciones y . Utilizando este sistema, los egipcios fueron capaces de resolver problemas aritméticos con fracciones, así como problemas algebraicos elementales. En geometría encontraron las reglas correctas para calcular el área de triángulos, rectángulos y trapecios, y el volumen de figuras como ortoedros, cilindros y, por supuesto, pirámides. Para calcular el área de un círculo, los egipcios utilizaban un cuadrado de lado . del diámetro del círculo, valor muy cercano al que se obtiene utilizando la constante pi (3,14).

El sistema babilónico de numeración era bastante diferente del egipcio. En el babilónico se utilizaban tablillas con varias muescas o marcas en forma de cuña (cuneiforme); una cuña sencilla representaba al 1 y una marca en forma de flecha representaba al 10 (véase tabla adjunta). Los números menores que 59 estaban formados por estos símbolos utilizando un proceso aditivo, como en las matemáticas egipcias. El número 60, sin embargo, se representaba con el mismo símbolo que el 1, y a partir de ahí, el valor de un símbolo venía dado por su posición en el número completo. Por ejemplo, un número compuesto por el símbolo del 2, seguido por el del 27 y terminado con el del 10, representaba 2 × 602 + 27 × 60 + 10. Este mismo principio fue ampliado a la representación de fracciones, de manera que el ejemplo anterior podía también representar 2 × 60 + 27 + 10 × (\), o 2 + 27 × (\) + 10 × (\)-2. Este sistema, denominado sexagesimal (base 60), resultaba tan útil como el sistema decimal (base 10).

Con el tiempo, los babilonios desarrollaron unas matemáticas más sofisticadas que les permitieron encontrar las raíces positivas de cualquier ecuación de segundo grado. Fueron incluso capaces de encontrar las raíces de algunas ecuaciones de tercer grado, y resolvieron problemas más complicados utilizando el teorema de Pitágoras. Los babilonios compilaron una gran cantidad de tablas, incluyendo tablas de multiplicar y de dividir, tablas de cuadrados y tablas de interés compuesto. Además, calcularon no sólo la suma de progresiones aritméticas y de algunas geométricas, sino también de sucesiones de cuadrados. También obtuvieron una buena aproximación de f.

Las matemáticas en Grecia

Los griegos tomaron elementos de las matemáticas de los babilonios y de los egipcios. La innovación más importante fue la invención de las matemáticas abstractas basadas en una estructura lógica de definiciones, axiomas y demostraciones. Según los cronistas griegos, este avance comenzó en el siglo VI a.C. con Tales de Mileto y Pitágoras de Samos. Este último enseñó la importancia del estudio de los números para poder entender el mundo. Algunos de sus discípulos hicieron importantes descubrimientos sobre la teoría de números y la geometría, que se atribuyen al propio Pitágoras.

En el siglo V a.C., algunos de los más importantes geómetras fueron el filósofo atomista Demócrito de Abdera, que encontró la fórmula correcta para calcular el volumen de una pirámide, e Hipócrates de Cos, que descubrió que el área de figuras geométricas en forma de media luna limitadas por arcos circulares son iguales a las de ciertos triángulos. Este descubrimiento está relacionado con el famoso problema de la cuadratura del círculo (construir un cuadrado de área igual a un círculo dado). Otros dos problemas bastante conocidos que tuvieron su origen en el mismo periodo son la trisección de un ángulo y la duplicación del cubo (construir un cubo cuyo volumen es dos veces el de un cubo dado). Todos estos problemas fueron resueltos, mediante diversos métodos, utilizando instrumentos más complicados que la regla y el compás. Sin embargo, hubo que esperar hasta el siglo XIX para demostrar finalmente que estos tres problemas no se pueden resolver utilizando solamente estos dos instrumentos básicos.

A finales del siglo V a.C., un matemático griego descubrió que no existe una unidad de longitud capaz de medir el lado y la diagonal de un cuadrado, es decir, una de las dos cantidades es inconmensurable. Esto significa que no existen dos números naturales m y n cuyo cociente sea igual a la proporción entre el lado y la diagonal. Dado que los griegos sólo utilizaban los números naturales (1, 2, 3…), no pudieron expresar numéricamente este cociente entre la diagonal y el lado de un cuadrado (este número, f, es lo que hoy se denomina número irracional). Debido a este descubrimiento se abandonó la teoría pitagórica de la proporción, basada en números, y se tuvo que crear una nueva teoría no numérica. Ésta fue introducida en el siglo IV a.C. por el matemático Eudoxo de Cnido, y la solución se puede encontrar en los Elementos de Euclides.

Eudoxo, además, descubrió un método para demostrar rigurosamente supuestos sobre áreas y volúmenes mediante aproximaciones sucesivas.

Euclides, matemático y profesor que trabajaba en el famoso Museo de Alejandría, también escribió tratados sobre óptica, astronomía y música. Los trece libros que componen sus Elementos contienen la mayor parte del conocimiento matemático existente a finales del siglo IV

a.C., en áreas tan diversas como la geometría de polígonos y del círculo, la teoría de números, la teoría de los inconmensurables, la geometría del espacio y la teoría elemental de áreas y volúmenes.

El siglo posterior a Euclides estuvo marcado por un gran auge de las matemáticas, como se puede comprobar en los trabajos de Arquímedes de Siracusa y de un joven contemporáneo, Apolonio de Perga. Arquímedes utilizó un nuevo método teórico, basado en la ponderación de secciones infinitamente pequeñas de figuras geométricas, para calcular las áreas y volúmenes de figuras obtenidas a partir de las cónicas. Éstas habían sido descubiertas por un alumno de Eudoxo llamado Menaechmo, y aparecían como tema de estudio en un tratado de Euclides; sin embargo, la primera referencia escrita conocida aparece en los trabajos de Arquímedes.

También investigó los centros de gravedad y el equilibrio de ciertos cuerpos sólidos flotando en agua. Casi todo su trabajo es parte de la tradición que llevó, en el siglo XVII, al desarrollo del cálculo. Su contemporáneo, Apolonio, escribió un tratado en ocho tomos sobre las cónicas, y estableció sus nombres: elipse, parábola e hipérbola. Este tratado sirvió de base para el estudio de la geometría de estas curvas hasta los tiempos del filósofo y científico francés René Descartes en el siglo XVII.

Después de Euclides, Arquímedes y Apolonio, Grecia no tuvo ningún geómetra de la misma talla.

Los escritos de Herón de Alejandría en el siglo I d.C. muestran cómo elementos de la tradición aritmética y de medidas de los babilonios y egipcios convivieron con las construcciones lógicas de los grandes geómetras. Los libros de Diofante de Alejandría en el siglo III d.C. continuaron con esta misma tradición, aunque ocupándose de problemas más complejos. En ellos Diofante encuentra las soluciones enteras para aquellos problemas que generan ecuaciones con varias incógnitas. Actualmente, estas ecuaciones se denominan diofánticas y se estudian en el análisis diofántico.

Las matemáticas aplicadas en Grecia

En paralelo con los estudios sobre matemáticas puras hasta ahora mencionados, se llevaron a cabo estudios de óptica, mecánica y astronomía. Muchos de los grandes matemáticos, como Euclides y Arquímedes, también escribieron sobre temas astronómicos. A principios del siglo II a.C., los astrónomos griegos adoptaron el sistema babilónico de almacenamiento de fracciones y, casi al mismo tiempo, compilaron tablas de las cuerdas de un círculo. Para un círculo de radio determinado, estas tablas daban la longitud de las cuerdas en función del ángulo central correspondiente, que crecía con un determinado incremento. Eran similares a las modernas tablas del seno y coseno, y marcaron el comienzo de la trigonometría. En la primera versión de estas tablas —las de Hiparco, hacia el 150 a.C.— los arcos crecían con un incremento de 7 °, de

0° a 180°. En tiempos del astrónomo Tolomeo, en el siglo II d.C., la maestría griega en el manejo de los números había avanzado hasta tal punto que Tolomeo fue capaz de incluir en su Almagesto una tabla de las cuerdas de un círculo con incrementos de ° que, aunque

expresadas en forma sexagesimal, eran correctas hasta la quinta cifra decimal.

Mientras tanto, se desarrollaron otros métodos para resolver problemas con triángulos planos y se introdujo un teorema —que recibe el nombre del astrónomo Menelao de Alejandría— para calcular las longitudes de arcos de esfera en función de otros arcos. Estos avances dieron a los astrónomos las herramientas necesarias para resolver problemas de astronomía esférica, y para desarrollar el sistema astronómico que sería utilizado hasta la época del astrónomo alemán Johannes Kepler.

Las matemáticas en la edad media

En Grecia, después de Tolomeo, se estableció la tradición de estudiar las obras de estos matemáticos de siglos anteriores en los centros de enseñanza. El que dichos trabajos se hayan conservado hasta nuestros días se debe principalmente a esta tradición. Sin embargo, los primeros avances matemáticos consecuencia del estudio de estas obras aparecieron en el mundo árabe.

Las matemáticas en el mundo islámico

Después de un siglo de expansión en la que la religión musulmana se difundió desde sus orígenes en la península Arábiga hasta dominar un territorio que se extendía desde la península Ibérica hasta los límites de la actual China, los árabes empezaron a incorporar a su propia ciencia los resultados de "ciencias extranjeras". Los traductores de instituciones como la Casa de la Sabiduría de Bagdad, mantenida por los califas gobernantes y por donaciones de particulares, escribieron versiones árabes de los trabajos de matemáticos griegos e indios.

Hacia el año 900, el periodo de incorporación se había completado y los estudiosos musulmanes comenzaron a construir sobre los conocimientos adquiridos. Entre otros avances, los matemáticos árabes ampliaron el sistema indio de posiciones decimales en aritmética de números enteros, extendiéndolo a las fracciones decimales. En el siglo XII, el matemático persa Omar Jayyam generalizó los métodos indios de extracción de raíces cuadradas y cúbicas para calcular raíces cuartas, quintas y de grado superior. El matemático árabe Al-JwDrizm; (de su nombre procede la palabra algoritmo, y el título de uno de sus libros es el origen de la palabra álgebra) desarrolló el álgebra de los polinomios; al-Karayi la completó para polinomios incluso con infinito número de términos. Los geómetras, como Ibrahim ibn Sinan, continuaron las investigaciones de Arquímedes sobre áreas y volúmenes. Kamal al-Din y otros aplicaron la teoría de las cónicas a la resolución de problemas de óptica. Los matemáticos Habas al-Hasib y Nasir ad-Din at-Tusi crearon trigonometrías plana y esférica utilizando la función seno de los indios y el teorema de Menelao. Estas trigonometrías no se convirtieron en disciplinas matemáticas en Occidente hasta la publicación del De triangulis omnimodis (1533) del astrónomo alemán Regiomontano.

Finalmente, algunos matemáticos árabes lograron importantes avances en la teoría de números, mientras otros crearon una gran variedad de métodos numéricos para la resolución de ecuaciones. Los países europeos con lenguas latinas adquirieron la mayor parte de estos conocimientos durante el siglo XII, el gran siglo de las traducciones. Los trabajos de los árabes, junto con las traducciones de los griegos clásicos fueron los principales responsables del crecimiento de las matemáticas durante la edad media. Los matemáticos italianos, como Leonardo Fibonacci y Luca Pacioli (uno de los grandes tratadistas del siglo XV en álgebra y aritmética, que desarrollaba para aplicar en el comercio), se basaron principalmente en fuentes árabes para sus estudios.

Las matemáticas durante el renacimiento

Aunque el final del periodo medieval fue testigo de importantes estudios matemáticos sobre problemas del infinito por autores como Nicole Oresme, no fue hasta principios del siglo XVI cuando se hizo un descubrimiento matemático de trascendencia en Occidente. Era una fórmula algebraica para la resolución de las ecuaciones de tercer y cuarto grado, y fue publicado en 1545

por el matemático italiano Gerolamo Cardano en su Ars magna. Este hallazgo llevó a los matemáticos a interesarse por los números complejos y estimuló la búsqueda de soluciones similares para ecuaciones de quinto grado y superior. Fue esta búsqueda la que a su vez generó los primeros trabajos sobre la teoría de grupos a finales del siglo XVIII y la teoría de ecuaciones del matemático francés Évariste Galois a principios del XIX.

También durante el siglo XVI se empezaron a utilizar los modernos signos matemáticos y algebraicos. El matemático francés François Viète llevó a cabo importantes estudios sobre la resolución de ecuaciones. Sus escritos ejercieron gran influencia en muchos matemáticos del siglo posterior, incluyendo a Pierre de Fermat en Francia e Isaac Newton en Inglaterra.